

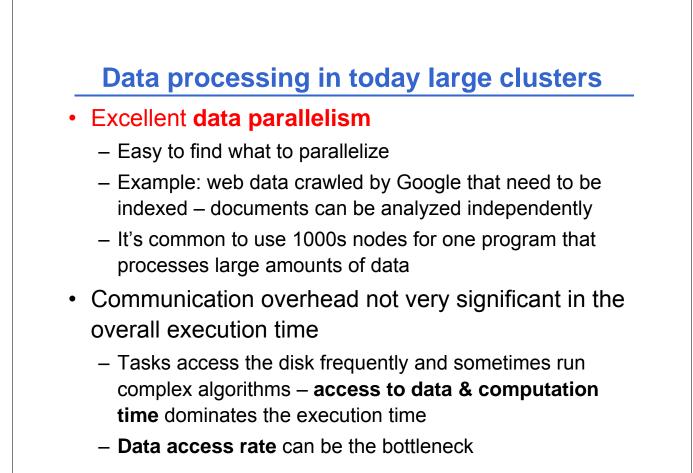
University of Bologna Dipartimento di Informatica – Scienza e Ingegneria (DISI) Engineering Bologna Campus

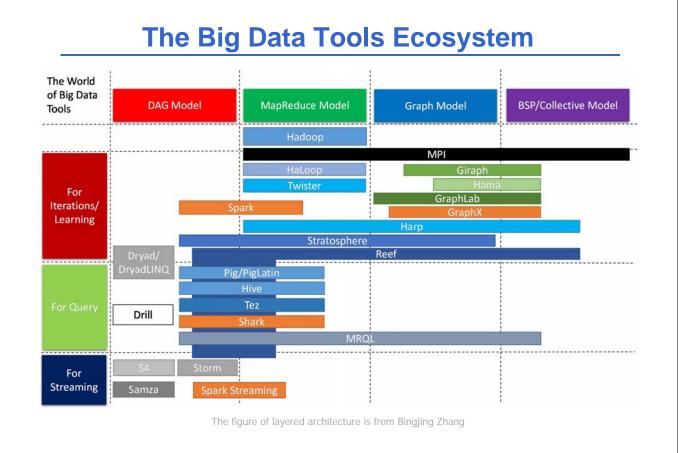
Class of Computer Networks M

Global Data Batching

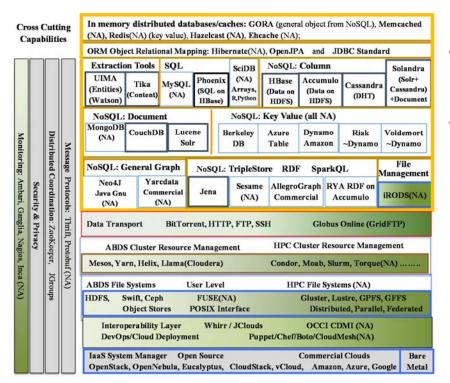
Luca Foschini

Academic year 2015/2016





A Layered Architecture view



- NA Non Apache projects
- Green layers are Apache/ Commercial Cloud (light) to HPC (darker) integration layers

The figure of layered architecture is from Prof. Geoffrey Fox

MapReduce: motivations

Programmers can **focus only on the application logic and parallel tasks** without the hassle of dealing with scheduling, fault-tolerance, and synchronization?

MapReduce is a programming framework that provides

- High-level API to specify parallel tasks
- Runtime system that takes care of Automatic parallelization & scheduling Load balancing Fault tolerance I/O scheduling Monitoring & status updates
- Everything runs on top of GFS (distributed file system)

Programmer benefits

- Huge speedups in programming/prototyping
 - "it makes it possible to write a simple program and run it efficiently on a thousand machines in a half hour"
- Programmers can exploit large amounts of resources quite easily
 - Including those with no experience in distributed/parallel systems

Traditional MapReduce definitions

Statements that go back to functional languages (e.g., LISP, Scheme) as a sequence of two steps for parallel exploration and results (Map and Reduce)

- Also in other programming languages: Map/Reduce in Python, Map in Perl
- Map (distribution phase)
 - Input: a list and a function
 - Execution: the function is applied to each list item
 - Result: a *new list* with the results of the function
- Reduce (result harvesting phase)
 - Input: a list and a function
 - Execution: the function combines/aggregates the list items
 - Result: one new item

What is MapReduce... in a nutshell

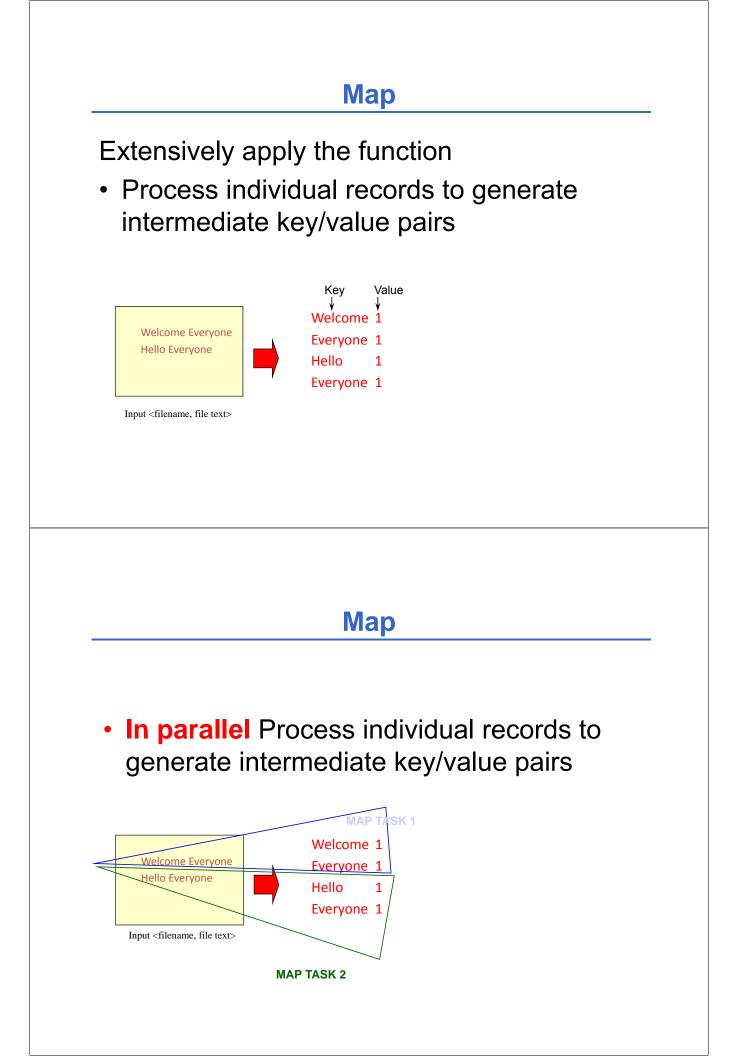
- Terms are borrowed from Functional Language (e.g., Lisp) Sum of squares:
- (map square '(1 2 3 4))

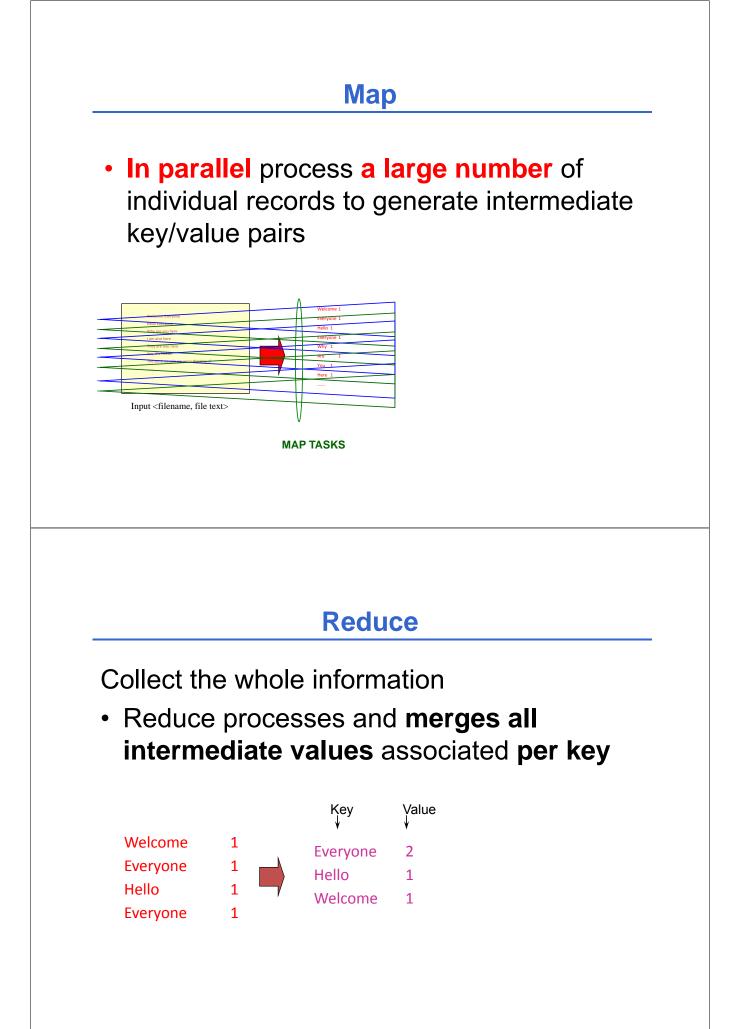
```
Output: (1 4 9 16)[processes each record sequentially and independently]
```

- (reduce + '(1 4 9 16))
 - (+ 16 (+ 9 (+ 4 1)))
 - Output: 30

[processes set of all records in batches]

- Let's consider a sample application: Wordcount
 - You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare's works) and asked to list the count for each of the words in each of the searched documents



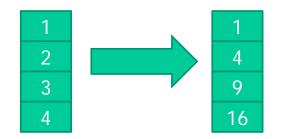


Reduce Each key assigned to one Reduce In parallel processes and merges all intermediate values by partitioning keys Welcome Everyone 2 Everyone Hello 1 Hello Welcome 1 Everyone REDUCE TASK 2 Popular: Hash partitioning, i.e., key is assigned to ٠ – reduce # = hash(key)%number of reduce tasks MapReduce: a deployment view Input Parallel MapReduce data Partitioned output Read many chunks of distributed data (no data dependencies) •

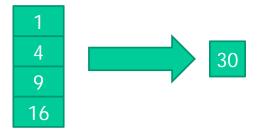
- Map: extract something from each chunk of data
- Shuffle and sort
- Reduce: aggregate, summarize, filter or transform sorted data
- Programmers can specify Map and Reduce functions

Traditional MapReduce examples (again)

Map (square, [1, 2, 3, 4])

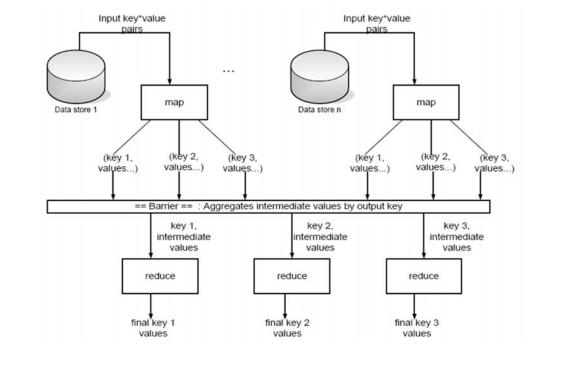


Reduce (add, [1, 4, 9, 16])



Google MapReduce definition

- map (String key, String val) is run on each item in set
 - Input example: a set of files, with keys being file names and values being file contents
 - Keys & values can have different types: the programmer has to convert between Strings and appropriate types inside map()
 - Emits, i.e., outputs, (new-key, new-val) pairs
 - Size of output set can be different from size of input set
- The runtime system aggregates the output of map by key
- reduce (String key, Iterator vals) is run for each unique key emitted by map()
 - Possible to have more values for one key
 - Emits final output pairs (possibly smaller set than the intermediate sorted set)

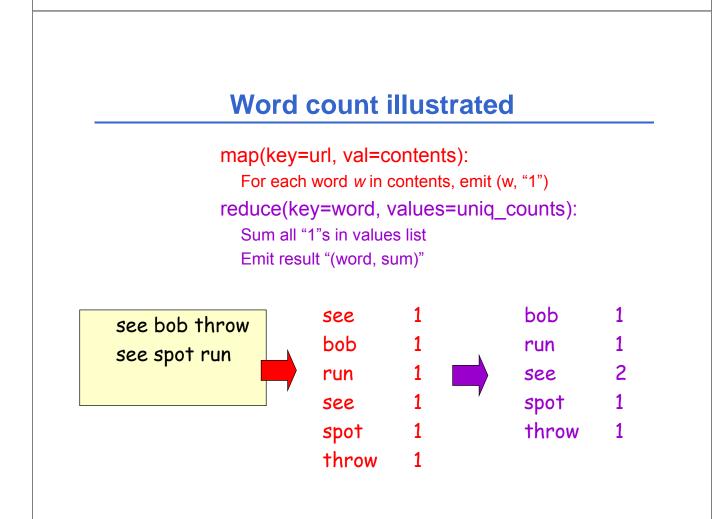


Running a MapReduce program

- Programmer fills in specification object
 - Input/output file names
 - Optional tuning parameters (e.g., size to split input/output into)
- Programmer invokes MapReduce function and passes it the specification object
- The runtime system calls map() and reduce()
 - The programmer just has to implement them

Word count example

map(String input_key, String input_value): // input_key: document name // input_value: document contents for each word w in input_value: EmitIntermediate(w, "1"); reduce(String output_key, Iterator intermediate_values): // output_key: a word // output_key: a word // output_values: a list of counts int result = 0; for each v in intermediate_values: result += ParseInt(v); Emit(AsString(result));



Other applications (1)

- Distributed grep
 - map() emits a line if it matches a supplied pattern
 - reduce() is an identity function; just emit same line
- Reverse web-link graph
 - map() emits (*target*, *source*) pairs for each link to a *target* URL found in a file *source*
 - reduce() emits pairs (*target*, list(*source*))
- Distributed sort
 - map() extracts sorting key from record (file) and outputs (key, record) pairs
 - reduce() is an identity function; just emit same pairs
 - The actual sort is done automatically by runtime system

Other applications (2)

- Machine learning issues
- Google news clustering problems
- Extracting data + reporting popular queries (Zeitgeist)
- Extract properties of web pages for experiments/products
- Processing satellite imagery data
- Graph computations
- Language model for machine translation
- Rewrite of Google Indexing Code in MapReduce
 - Size of one phase 3800 => 700 lines, over 5x drop

Implementation overview (at Google)

- Environment
 - Large clusters of commodity PC's connected with Gigabit links
 - 4-8 GB ram per machine, dual x86 processors
 - · Network bandwidth often significantly less than 1 GB/s
 - Machine failures are common due to # machines
 - GFS: distributed file system manages data
 - Storage is provided by cheap IDE disks attached to machine
- Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines
- Implementation is a C++ library linked into user programs

Scheduling and execution

One master, many workers

- Input data split into M map tasks (typically 64 MB in size)
- Reduce phase partitioned into R reduce tasks
- Tasks are assigned to workers dynamically
- Often: M=200,000; R=4000; workers=2000

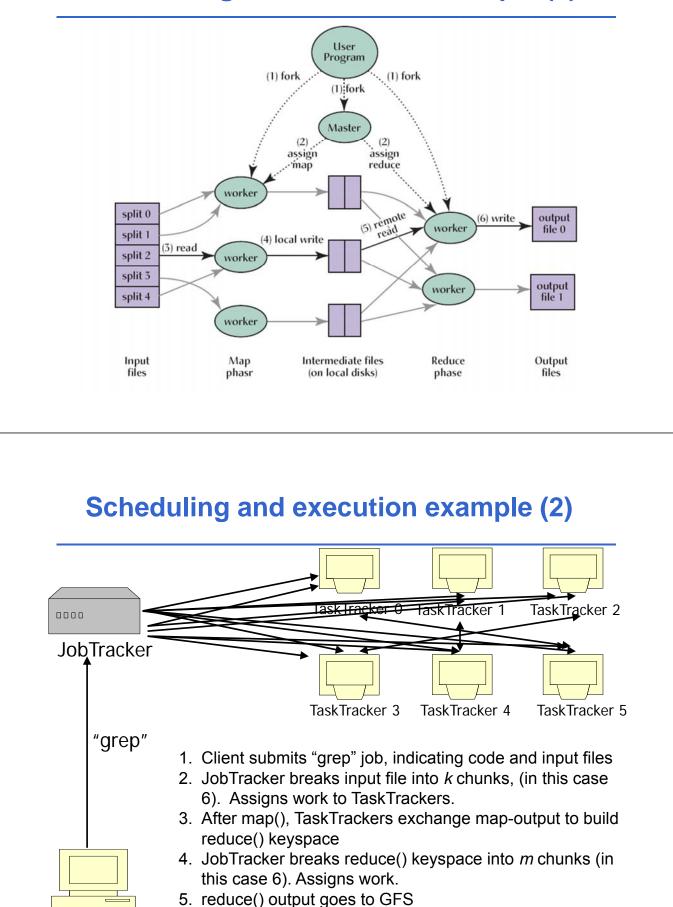
· Master assigns each map task to a free worker

- Considers locality of data to worker when assigning a task
- Worker reads task input (often from local disk)
- Intermediate key/value pairs written to local disk, divided into R regions, and the locations of the regions are passed to the master

Master assigns each reduce task to a free worker

- Worker reads intermediate k/v pairs from map workers
- Worker applies user's reduce operation to produce the output (stored in GFS)

Scheduling and execution example (1)



Fault-tolerance

- On master failure:
 - State is check-pointed to GFS: new master recovers & continues
- On worker failure:
 - Master detects failure via periodic heartbeats
 - Both completed and in-progress map tasks on that worker should be re-executed (→ output stored on local disk)
 - Only in-progress reduce tasks on that worker should be reexecuted (→ output stored in global file system)
- Robustness:
 - Example: Lost 1600 of 1800 machines once, but finished fine

Favoring Data locality

- Goal: conserve network bandwidth
- In GFS, data files are divided into 64 MB blocks and 3 copies of each are stored on different machines
- Master program schedules map() tasks based on the location of these replicas:
 - Put map() tasks physically on the same machine as one of the input replicas (or, at least on the same rack/network switch)
 - In this way, the machines can read input at local disk speed. Otherwise, rack switches would limit read rate

Backup tasks

- **Problem:** stragglers (i.e., slow workers) significantly lengthen the completion time
 - Other jobs may be consuming resources on machine
 - Bad disks with soft errors (i.e., correctable) transfer data very slowly
 - Other weird things: processor caches disabled at machine init
- Solution: Close to completion, spawn backup copies of the remaining in-progress tasks
 - Whichever one finishes first, wins
 - Additional cost: a few percent more resource usage.
 - Example: A sort program without backup was 44% longer

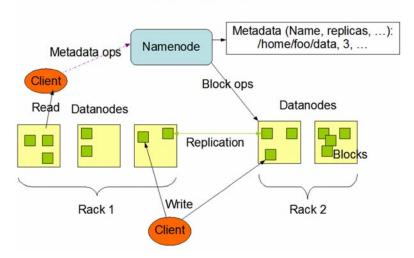
Hadoop: a Java-based MapReduce Implementation

An open source platform for distributed computing developed by Apache

- Started as open source MapReduce, but evolved to support other languages such as Pig and Hive
- Written in Java
- Hadoop common: set of utilities that support the other subprojects
 - FileSystem, RPC, and serialization libraries
- Essential subprojects:
 - Distributed file system (HDFS)
 - MapReduce
 - Yet Another Resource Negotiator (YARN) for cluster resource management

HDFS

HDFS Architecture



- Inspired by GoogleFS
- Master/slave architecture
 - NameNode is master (meta-data operations, access control)
 - DataNodes are slaves: one per node in the cluster

YARN resource manager

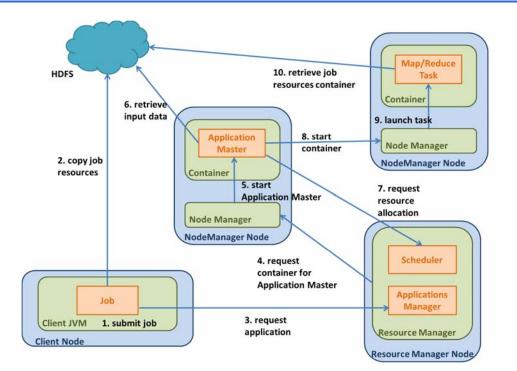
YARN provides management for virtual Hadoop clusters over a large physical cluster

- Handles node allocation in a cluster
- Supplies new nodes with configuration
- Distributes Hadoop to allocated nodes
- Starts Map/Reduce and HDFS workers
- Includes management and monitoring

Today, other resource managers are available, such as MESOS

The YARN Scheduler

- YARN = Yet Another Resource Negotiator
- Used underneath Hadoop 2.x +
- Treats each server as a collection of containers
 - Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)
- · Has 3 main components
 - Global Resource Manager (RM) node
 - Scheduler: globally allocates the required resources
 - ApplicationManager. coordinates the execution of the job on the other nodes
 - Per-server Node Manager (NM)
 - Daemon and server-specific functions: *manages* local resources, *instantiates containers* to run tasks, *monitors container* resource usage
 - Per-application (job) Application Master (AM)
 - Container negotiation with RM and NMs
 - Detecting task failures of that job



Hadoop extensions (out-of-our-scope...)

Avro: Large-scale data serialization
Chukwa: Data collection (e.g., logs)
Hbase: Structured data storage for large tables
Hive: Data warehousing and management (Facebook)
Pig: Parallel SQL-like language (Yahoo)
ZooKeeper: coordination for distributed apps
Mahout: machine learning and data mining library
Sahara: deployment of Hadoop clusters on OpenStack

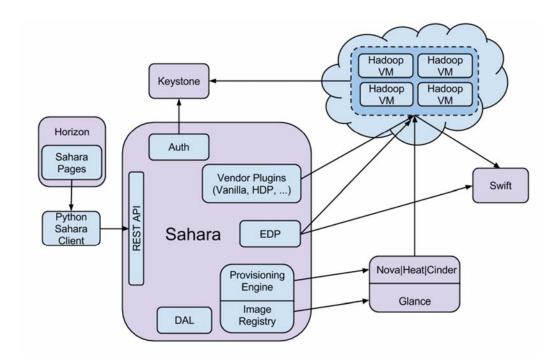
Hadoop for OpenStack

Hadoop can exploit the virtualization provided by OpenStack in order to obtain more flexible clusters and a better resource utilization

OpenStack service **Sahara** can be used to **deploy** and **configure Hadoop clusters** in a Cloud environment:

- Cluster scaling functionalities
- Analytics as a Service (AaaS) functionalities
- Accessible by OpenStack in all ways, via *dashboard, CLI or RESTful API*

Sahara components



Spark: what is it?

- Separate, fast, MapReduce-like engine
 - In-memory data storage for very fast iterative queries
 - General execution graphs and powerful optimizations
 - Up to 40x faster than Hadoop
- Compatible with Hadoop's storage APIs
 - Can read/write to any Hadoop-supported system, including HDFS, HBase, SequenceFiles, etc.
- Not a modified version of Hadoop

- Spark project started in 2009, open sourced 2010
- Spark started summer 2011, alpha April 2012
- In use at Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research & others
- 200+ member meetup, 500+ watchers on GitHub

Why a New Programming Model?

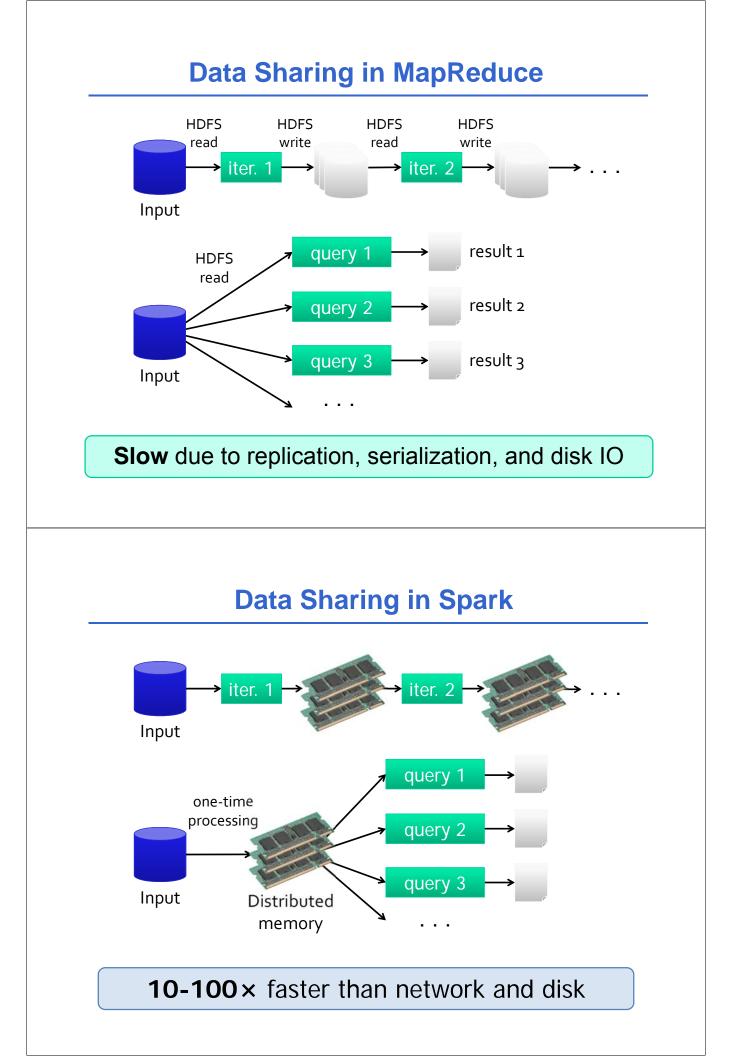
- MapReduce greatly simplified big data analysis
- But as soon as it got popular, users wanted more:
 - More complex, multi-stage applications (e.g., iterative graph algorithms and machine learning)
 - More interactive ad-hoc queries
- Both multi-stage and interactive apps require faster **data sharing** across parallel jobs

Spark at a glance

- Various types of data processing computations available in one single tool:
 - Batch/streaming analysis, interactive queries and iterative algorithms.
 - Previously, these would require several distinct and independent tools
- APIs available in Java, Scala, Python
 - R language supported, for data scientists with moderate programming experience
- Supports several storage options and streaming inputs for parsing

Spark at a glance / 2

- Leverages on in-memory data processing:
 - Removes the MapReduce overhead of writing intermediate results on disk
 - Fault-tolerance is still achieved through the concept of **lineage**.
- Master/Worker cluster architecture
 - Easily deployable in most environments, including existing Hadoop clusters
- Widely configurable for performance optimization, both in terms of resource usage and application behavior



Spark Programming Model

- Programs can be run
 - From compiled sources, with proper Spark dependencies, with the *spark-submit* script
 - Interactively from Spark Shell, a console available for Scala and Python languages
- Key idea: resilient distributed datasets (RDDs)

– Distributed, immutable collections of objects

 Can be cached in memory across cluster nodes

RDD Programming Model

Two kinds of operations can be performed on RDDs

- Transformations that act on existing RDDs, by creating new ones
 - Similar to Hadoop map tasks
 - Lazily evaluated
- Actions that return results from input RDDs
 - Similar to Hadoop reduce tasks
 - Force immediate evaluation of pending transformations in the input RDD

RDD Transformations

 In addiction to being *lazily* evaluated, all transformations are computed again on every action requested

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)

- Until the third line, no operation is performed
- The *reduce()* will then force a read from the text file and the *map()* transformation

 However, a further action can trigger another file read and another identical map()

val lines = sc. textFile("data. txt") Transformation
val lineLengths = line Action => s.length;
println(lineLengths.com, Action val totalLength = lineLengths.retrieved (a, b) => a + b)

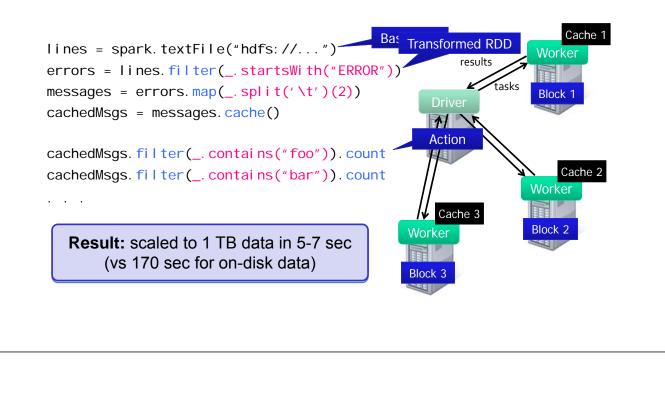
 This effect is costly, but it can be avoided by using the persist() method

```
val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
lineLengths.persist()
```

 The RDD data read and mapped will then be saved for future actions

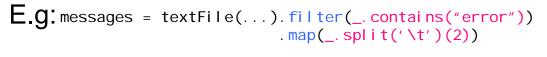
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

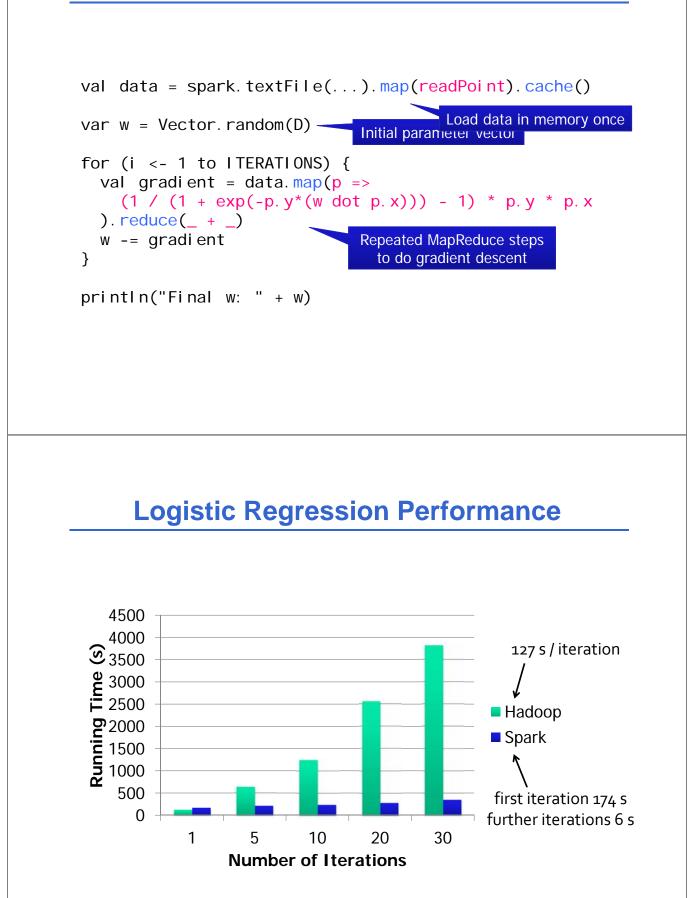


Fault Tolerance

RDDs track the series of transformations used to build them (their *lineage*) to recompute lost data



Example: Logistic Regression



Supported Operators

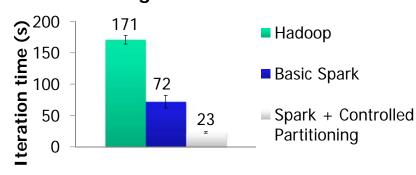
- map •
- filter
- groupBy
- sort
- join
- leftOuterJoin
- rightOuterJoin

- reduce •
- count
- reduceByKey
- groupByKey
- first •
- uni on
- cross

- sample
- cogroup •
- take
- partitionBy
- pipe
- save
- . . .

Other Engine Features

- General graphs of operators (e.g. map-reducereduce)
- Hash-based reduces (faster than Hadoop sort)
- Controlled data partitioning to lower communication

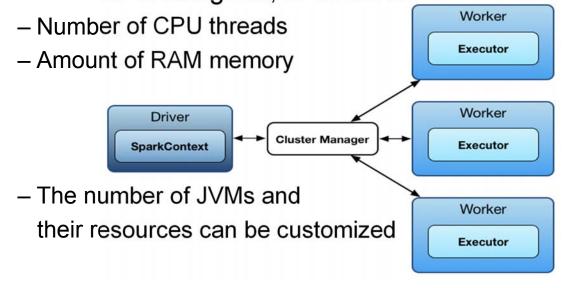


PageRank Performance

Spark Architecture

- Once submitted, Spark programs create *directed acyclic graphs (DAGs)* of all transformations and actions, internally optimized for the execution
- The graph is then split into **stages**, in turn composed by **tasks**, the smallest unit of work
- Thus, Spark is a master/slave system composed by:
 - Driver, central coordinator node running the main() method of the program and dispatching tasks
 - Cluster Master, node that launches and manages actual executors
 - **Executors**, responsible for running tasks

 Each executor spawns at least one dedicated JVM, to which a certain share of resources is assigned, in terms of:



Spark Deployment

- Spark can be deployed in a **standalone** cluster, i.e., its own cluster master independently launches and manages its executors
- However, Spark can rely upon external resource managers, such as:
 - Hadoop YARN (already seen before...)
 - Apache MESOS
- These others can provide richer functionalities, such as resource scheduling queues, not available in the standalone mode