
Class of

Computer Networks M

Luca Foschini

Academic year 2015/2016

Global Data Batching

University of Bologna

Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Data processing in today large clusters

• Excellent data parallelism
– Easy to find what to parallelize

– Example: web data crawled by Google that need to be
indexed – documents can be analyzed independently

– It’s common to use 1000s nodes for one program that
processes large amounts of data

• Communication overhead not very significant in the
overall execution time
– Tasks access the disk frequently and sometimes run

complex algorithms – access to data & computation
time dominates the execution time

– Data access rate can be the bottleneck

The Big Data Tools Ecosystem

The figure of layered architecture is from Bingjing Zhang

A Layered Architecture view

The figure of layered architecture is from Prof. Geoffrey Fox

• NA –
Non Apache
projects

• Green layers
are Apache/
Commercial
Cloud (light) to
HPC (darker)
integration
layers

MapReduce: motivations

MapReduce is a programming framework that provides

• High-level API to specify parallel tasks

• Runtime system that takes care of
▪ Automatic parallelization & scheduling

▪ Load balancing

▪ Fault tolerance

▪ I/O scheduling

▪ Monitoring & status updates

• Everything runs on top of GFS (distributed file system)

Programmers can focus only on the application logic and
parallel tasks without the hassle of dealing with scheduling,
fault-tolerance, and synchronization?

Programmer benefits

• Huge speedups in programming/prototyping

– “it makes it possible to write a simple program

and run it efficiently on a thousand machines in a

half hour”

• Programmers can exploit large amounts of

resources quite easily

– Including those with no experience in

distributed/parallel systems

Traditional MapReduce definitions

Statements that go back to functional languages (e.g.,
LISP, Scheme) as a sequence of two steps for parallel
exploration and results (Map and Reduce)
 Also in other programming languages: Map/Reduce in

Python, Map in Perl
 Map (distribution phase)
 Input: a list and a function
 Execution: the function is applied to each list item
 Result: a new list with the results of the function

 Reduce (result harvesting phase)
 Input: a list and a function
 Execution: the function combines/aggregates the list

items
 Result: one new item

What is MapReduce… in a nutshell

• Terms are borrowed from Functional Language (e.g., Lisp)

Sum of squares:

• (map square ‘(1 2 3 4))
– Output: (1 4 9 16)

[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1)))

– Output: 30

[processes set of all records in batches]

• Let’s consider a sample application: Wordcount

– You are given a huge dataset (e.g., Wikipedia dump or all of
Shakespeare’s works) and asked to list the count for each of the words in
each of the searched documents

Map

Extensively apply the function

• Process individual records to generate
intermediate key/value pairs

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1

Input <filename, file text>

Key Value

Map

• In parallel Process individual records to
generate intermediate key/value pairs

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1

Input <filename, file text>

MAP TASK 1

MAP TASK 2

Map

• In parallel process a large number of
individual records to generate intermediate
key/value pairs

Welcome Everyone

Hello Everyone

Why are you here

I am also here

They are also here

Yes, it’s THEM!

The same people we were thinking of

…….

Welcome 1

Everyone 1

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….

Input <filename, file text>

MAP TASKS

Reduce

Collect the whole information

• Reduce processes and merges all
intermediate values associated per key

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

Key Value

Reduce

• Each key assigned to one Reduce

• In parallel processes and merges all intermediate
values by partitioning keys

• Popular: Hash partitioning, i.e., key is assigned to

– reduce # = hash(key)%number of reduce tasks

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

REDUCE
TASK 1

REDUCE
TASK 2

MapReduce: a deployment view

• Read many chunks of distributed data (no data dependencies)

• Map: extract something from each chunk of data

• Shuffle and sort

• Reduce: aggregate, summarize, filter or transform sorted data

• Programmers can specify Map and Reduce functions

Traditional MapReduce examples (again)

1
2
3
4

1
4
9
16

Map (square, [1, 2, 3, 4]) Reduce (add, [1, 4, 9, 16])

30

1
4
9
16

Google MapReduce definition

• map (String key, String val) is run on each item in set
– Input example: a set of files, with keys being file names and values

being file contents

– Keys & values can have different types: the programmer has to
convert between Strings and appropriate types inside map()

– Emits, i.e., outputs, (new-key, new-val) pairs

– Size of output set can be different from size of input set

• The runtime system aggregates the output of map by key

• reduce (String key, Iterator vals) is run for each unique key
emitted by map()
– Possible to have more values for one key

– Emits final output pairs (possibly smaller set than the intermediate
sorted set)

Map & aggregation must finish before
reduce can start

Running a MapReduce program

• Programmer fills in specification object

– Input/output file names

– Optional tuning parameters (e.g., size to split

input/output into)

• Programmer invokes MapReduce function and

passes it the specification object

• The runtime system calls map() and reduce()

– The programmer just has to implement them

Word count example
map(String input_key, String input_value):
// input_key: document name
// input_value: document contents

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

// output_key: a word
// output_values: a list of counts

int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));

Word count illustrated

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list

Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

Other applications (1)

• Distributed grep
• map() emits a line if it matches a supplied pattern

• reduce() is an identity function; just emit same line

• Reverse web-link graph
• map() emits (target, source) pairs for each link to a target

URL found in a file source

• reduce() emits pairs (target, list(source))

• Distributed sort
• map() extracts sorting key from record (file) and outputs

(key, record) pairs

• reduce() is an identity function; just emit same pairs

• The actual sort is done automatically by runtime system

Other applications (2)

• Machine learning issues

• Google news clustering problems

• Extracting data + reporting popular queries (Zeitgeist)

• Extract properties of web pages for experiments/products

• Processing satellite imagery data

• Graph computations

• Language model for machine translation

• Rewrite of Google Indexing Code in MapReduce

– Size of one phase 3800 => 700 lines, over 5x drop

Implementation overview (at Google)
• Environment

– Large clusters of commodity PC’s connected with
Gigabit links

• 4-8 GB ram per machine, dual x86 processors

• Network bandwidth often significantly less than 1 GB/s

• Machine failures are common due to # machines

– GFS: distributed file system manages data
• Storage is provided by cheap IDE disks attached to machine

• Job scheduling system: jobs made up of tasks,
scheduler assigns tasks to machines

• Implementation is a C++ library linked into user
programs

Scheduling and execution

• One master, many workers
– Input data split into M map tasks (typically 64 MB in size)

– Reduce phase partitioned into R reduce tasks

– Tasks are assigned to workers dynamically

– Often: M=200,000; R=4000; workers=2000

• Master assigns each map task to a free worker
– Considers locality of data to worker when assigning a task

– Worker reads task input (often from local disk)

– Intermediate key/value pairs written to local disk, divided into R
regions, and the locations of the regions are passed to the master

• Master assigns each reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers

– Worker applies user’s reduce operation to produce the output
(stored in GFS)

Scheduling and execution example (1)

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code and input files
2. JobTracker breaks input file into k chunks, (in this case

6). Assigns work to TaskTrackers.
3. After map(), TaskTrackers exchange map-output to build

reduce() keyspace
4. JobTracker breaks reduce() keyspace into m chunks (in

this case 6). Assigns work.
5. reduce() output goes to GFS

“grep”

Scheduling and execution example (2)

Fault-tolerance

• On master failure:

– State is check-pointed to GFS: new master recovers & continues

• On worker failure:

– Master detects failure via periodic heartbeats

– Both completed and in-progress map tasks on that worker should

be re-executed (→ output stored on local disk)

– Only in-progress reduce tasks on that worker should be re-

executed (→ output stored in global file system)

• Robustness:

– Example: Lost 1600 of 1800 machines once, but finished fine

Favoring Data locality

• Goal: conserve network bandwidth
• In GFS, data files are divided into 64 MB blocks and

3 copies of each are stored on different machines
• Master program schedules map() tasks based on

the location of these replicas:

 Put map() tasks physically on the same machine as one
of the input replicas (or, at least on the same
rack/network switch)

 In this way, the machines can read input at local disk
speed. Otherwise, rack switches would limit read rate

Backup tasks

• Problem: stragglers (i.e., slow workers) significantly
lengthen the completion time

– Other jobs may be consuming resources on machine

– Bad disks with soft errors (i.e., correctable) transfer data
very slowly

– Other weird things: processor caches disabled at
machine init

• Solution: Close to completion, spawn backup copies
of the remaining in-progress tasks

– Whichever one finishes first, wins

– Additional cost: a few percent more resource usage.

– Example: A sort program without backup was 44%
longer

Hadoop:
a Java-based MapReduce Implementation

An open source platform for distributed computing developed by
Apache

– Started as open source MapReduce, but evolved to support other
languages such as Pig and Hive

– Written in Java

• Hadoop common: set of utilities that support the other
subprojects

– FileSystem, RPC, and serialization libraries

• Essential subprojects:
– Distributed file system (HDFS)

– MapReduce

– Yet Another Resource Negotiator (YARN) for cluster resource
management

HDFS

• Inspired by GoogleFS

• Master/slave architecture
– NameNode is master (meta-data operations, access control)

– DataNodes are slaves: one per node in the cluster

YARN resource manager

YARN provides management for virtual Hadoop

clusters over a large physical cluster

– Handles node allocation in a cluster

– Supplies new nodes with configuration

– Distributes Hadoop to allocated nodes

– Starts Map/Reduce and HDFS workers

– Includes management and monitoring

Today, other resource managers are available, such as

MESOS

The YARN Scheduler

• YARN = Yet Another Resource Negotiator
• Used underneath Hadoop 2.x +
• Treats each server as a collection of containers

– Container = fixed CPU + fixed memory (think of Linux
cgroups, but even more lightweight)

• Has 3 main components
– Global Resource Manager (RM) node

– Scheduler: globally allocates the required resources
– ApplicationManager: coordinates the execution of the job on the

other nodes
– Per-server Node Manager (NM)

– Daemon and server-specific functions: manages local resources,
instantiates containers to run tasks, monitors container
resource usage

– Per-application (job) Application Master (AM)
– Container negotiation with RM and NMs
– Detecting task failures of that job

YARN at work

Hadoop extensions (out-of-our-scope…)

Avro: Large-scale data serialization

Chukwa: Data collection (e.g., logs)

Hbase: Structured data storage for large tables

Hive: Data warehousing and management (Facebook)

Pig: Parallel SQL-like language (Yahoo)

ZooKeeper: coordination for distributed apps

Mahout: machine learning and data mining library

Sahara: deployment of Hadoop clusters on OpenStack

Hadoop for OpenStack

Hadoop can exploit the virtualization provided by
OpenStack in order to obtain more flexible clusters and
a better resource utilization

OpenStack service Sahara can be used to deploy and
configure Hadoop clusters in a Cloud environment:
• Cluster scaling functionalities
• Analytics as a Service (AaaS) functionalities
• Accessible by OpenStack in all ways, via dashboard,

CLI or RESTful API

Sahara components

Spark: what is it?

• Separate, fast, MapReduce-like engine
– In-memory data storage for very fast iterative

queries

– General execution graphs and powerful
optimizations

– Up to 40x faster than Hadoop

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system,

including HDFS, HBase, SequenceFiles, etc.

• Not a modified version of Hadoop

Spark Project History

• Spark project started in 2009, open
sourced 2010

• Spark started summer 2011, alpha April
2012

• In use at Berkeley, Princeton, Klout,
Foursquare, Conviva, Quantifind, Yahoo!
Research & others

• 200+ member meetup, 500+ watchers on
GitHub

Why a New Programming Model?

• MapReduce greatly simplified big data
analysis

• But as soon as it got popular, users wanted
more:
– More complex, multi-stage applications (e.g.,

iterative graph algorithms and machine learning)

– More interactive ad-hoc queries

• Both multi-stage and interactive apps require
faster data sharing across parallel jobs

Spark at a glance

• Various types of data processing computations
available in one single tool:

• Batch/streaming analysis, interactive queries
and iterative algorithms.

• Previously, these would require several distinct
and independent tools

• APIs available in Java, Scala, Python

• R language supported, for data scientists with
moderate programming experience

• Supports several storage options and streaming
inputs for parsing

Spark at a glance / 2

• Leverages on in-memory data processing:

• Removes the MapReduce overhead of writing
intermediate results on disk

• Fault-tolerance is still achieved through the
concept of lineage.

• Master/Worker cluster architecture

• Easily deployable in most environments,
including existing Hadoop clusters

• Widely configurable for performance optimization,
both in terms of resource usage and application
behavior

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one‐time
processing

10-100× faster than network and disk

Spark Programming Model

• Programs can be run
– From compiled sources, with proper Spark

dependencies, with the spark-submit script

– Interactively from Spark Shell, a console
available for Scala and Python languages

• Key idea: resilient distributed datasets
(RDDs)
– Distributed, immutable collections of objects

– Can be cached in memory across cluster
nodes

RDD Programming Model

Two kinds of operations can be performed on
RDDs

• Transformations that act on existing RDDs,
by creating new ones
– Similar to Hadoop map tasks

– Lazily evaluated

• Actions that return results from input RDDs
– Similar to Hadoop reduce tasks

– Force immediate evaluation of pending
transformations in the input RDD

RDD Transformations

• In addiction to being lazily evaluated, all
transformations are computed again on
every action requested

• Until the third line, no operation is performed

• The reduce() will then force a read from the
text file and the map() transformation

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)

Transformation

Action

Persisting RDDs

• However, a further action can trigger another
file read and another identical map()

• This effect is costly, but it can be avoided by
using the persist() method

• The RDD data read and mapped will then be
saved for future actions

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
println(lineLengths.count())
val totalLength = lineLengths.reduce((a, b) => a + b)

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
lineLengths.persist()

Transformation

Action
Action

Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in
<1 sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault Tolerance

RDDs track the series of transformations
used to build them (their lineage) to re-
compute lost data

E.g: messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func =

_.contains(...)

MappedRDD
func = _.split(…)

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Initial parameter vector

Repeated MapReduce steps
to do gradient descent

Load data in memory once

Logistic Regression Performance

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
(s

)

Number of Iterations

Hadoop

Spark

127 s / iteration

first iteration 174 s
further iterations 6 s

Supported Operators

• map

• filter

• groupBy

• sort

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• reduceByKey

• groupByKey

• first

• union

• cross

• sample

• cogroup

• take

• partitionBy

• pipe

• save

• ...

Other Engine Features

• General graphs of operators (e.g. map-reduce-
reduce)

• Hash-based reduces (faster than Hadoop sort)

• Controlled data partitioning to lower
communication

171

72

23

0

50

100

150

200

It
er

at
io

n
 t

im
e

(s
)

PageRank Performance

Hadoop

Basic Spark

Spark + Controlled
Partitioning

Spark Architecture

• Once submitted, Spark programs create directed
acyclic graphs (DAGs) of all transformations and
actions, internally optimized for the execution

• The graph is then split into stages, in turn
composed by tasks, the smallest unit of work

• Thus, Spark is a master/slave system composed
by:
– Driver, central coordinator node running the main()

method of the program and dispatching tasks

– Cluster Master, node that launches and manages
actual executors

– Executors, responsible for running tasks

Spark Architecture

• Each executor spawns at least one
dedicated JVM, to which a certain share of
resources is assigned, in terms of:
– Number of CPU threads

– Amount of RAM memory

– The number of JVMs and

their resources can be customized

Spark Deployment

• Spark can be deployed in a standalone cluster,
i.e., its own cluster master independently launches
and manages its executors

• However, Spark can rely upon external resource
managers, such as:

– Hadoop YARN (already seen before…)

– Apache MESOS

• These others can provide richer functionalities,
such as resource scheduling queues, not available
in the standalone mode

